Bantu semuannya ya pakai cara jangan asal jawab
Matematika
della1237
Pertanyaan
Bantu semuannya ya pakai cara jangan asal jawab
1 Jawaban
-
1. Jawaban 4452mot
26) Q(7, -1)
Transalasi (2, 5) dan (3, -2)
[tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{7}{ - 1} + \binom{2}{5} + \binom{3}{ - 2} \\ \binom{ {x}^{l} }{ {y}^{ l} } = \binom{12}{2} [/tex]
C(12, 2)
27) garis y = x
R[O, π/2] Φ = 90°
[tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{cos \: 90 \: \: \: \: - sin \: 90}{sin \: 90 \: \: \: \: \: \: \: \: \: \: cos \: 90} \binom{x}{y} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{0 \: \: \: - 1}{1 \: \: \: \: \: \: \: 0} \binom{x}{y} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{ - y}{x} [/tex]
x = y' dan y = -x'
substitusi ke persamaan garis
y = x
(-x') = y'
-x = y
y = -x (B)
28) A (1, 4)
T1 : y = -x dan T2 : R[0, 180°]
T2 o T1
[tex] \binom{cos \: 180 \: \: \: - sin \: 180}{sin \: 180 \: \: \: \: \: \: \: cos180} \times \binom{0 \: \: \: - 1}{ - 1 \: \: \: \: \: 0} \\ = \binom{ - 1 \: \: \: \: \: \: \: \: \: \: 0}{0 \: \: \: \: \:- 1} \times \binom{0 \: \: \: \: - 1}{ - 1 \: \: \: \: \: \: \: 0} \\ = \binom{0 \: \: \: \: 1}{1 \: \: \: \: 0} [/tex]
maka bayangan titik A(1 , 4)
[tex] \binom{0 \: \: \: \: \: 1}{ 1 \: \: \: \: \: \: 0} \times \binom{1}{4} = \binom{4}{1} [/tex]
c) (4, 1)
29) garis x + 3y = 0
T : Rotasi [0, 180°]
[tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{cos \: 180 \: \: \: - sin \: 180 }{sin \: 180 \: \: \: \: \: \: \: \: cos \: 180} \times \binom{x}{y} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{ - 1 \: \: \: \: \: \: \: \: 0}{0 \: \: \: \: - 1} \times \binom{x}{y} \\ \binom{ {x}^{l} }{{y}^{l} } = \binom{ - {x} }{ - y} [/tex]
x = -x' dan y = -y'
substitusi ke garis
x + 3y = 0
(-x') + 3(-y') = 0
-x - 3y = 0
3y + x = 0
(C) 3y + x = 0
30) y = x
[tex] \binom{0 \: \: \: \: 1}{1 \: \: \: \: 0} [/tex]
(A)
31) P(9, -3) T(2, -1) P' (x', y')
[tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{9}{ - 3} + \binom{2}{ - 1} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{11}{ - 4} [/tex]
bayangan titik P' (11, -4) A
32) P(3, 3) Dilatasi [O, 2] C
[tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{2 \: \: \: \: 0}{0 \: \: \: \: 2} \times \binom{3}{3} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{6}{6} [/tex]
bayangan titik C(6, 6)
33) garis x - y - 2 = 0
T : Refleksi sumbu x
[tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{1 \: \: \: \: \: \: \: 0}{0 \: \: \: - 1} \times \binom{x}{y} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{x}{ - y} [/tex]
x = x' dan y = -y'
maka persamaan bayangannya
x - y - 2 = 0
(x') - (-y') - 2 = 0
x + y - 2 = 0
E
34) A(2, 9) direfleksikan terhadap garis x = -1 maka bayanganya A' (2(-1) - 2, 9) = A' (-4, 9)
lalu di refleksikan terhadap garis x = 2 maka bayanganya A" (2(2) + 4, 9) = A" (8, 9)
A