Matematika

Pertanyaan

Bantu semuannya ya pakai cara jangan asal jawab
Bantu semuannya ya pakai cara jangan asal jawab

1 Jawaban

  • 26) Q(7, -1)
    Transalasi (2, 5) dan (3, -2)
    [tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{7}{ - 1} + \binom{2}{5} + \binom{3}{ - 2} \\ \binom{ {x}^{l} }{ {y}^{ l} } = \binom{12}{2} [/tex]
    C(12, 2)

    27) garis y = x
    R[O, π/2] Φ = 90°
    [tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{cos \: 90 \: \: \: \: - sin \: 90}{sin \: 90 \: \: \: \: \: \: \: \: \: \: cos \: 90} \binom{x}{y} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{0 \: \: \: - 1}{1 \: \: \: \: \: \: \: 0} \binom{x}{y} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{ - y}{x} [/tex]

    x = y' dan y = -x'
    substitusi ke persamaan garis
    y = x
    (-x') = y'
    -x = y
    y = -x (B)

    28) A (1, 4)
    T1 : y = -x dan T2 : R[0, 180°]
    T2 o T1
    [tex] \binom{cos \: 180 \: \: \: - sin \: 180}{sin \: 180 \: \: \: \: \: \: \: cos180} \times \binom{0 \: \: \: - 1}{ - 1 \: \: \: \: \: 0} \\ = \binom{ - 1 \: \: \: \: \: \: \: \: \: \: 0}{0 \: \: \: \: \:- 1} \times \binom{0 \: \: \: \: - 1}{ - 1 \: \: \: \: \: \: \: 0} \\ = \binom{0 \: \: \: \: 1}{1 \: \: \: \: 0} [/tex]
    maka bayangan titik A(1 , 4)
    [tex] \binom{0 \: \: \: \: \: 1}{ 1 \: \: \: \: \: \: 0} \times \binom{1}{4} = \binom{4}{1} [/tex]
    c) (4, 1)

    29) garis x + 3y = 0
    T : Rotasi [0, 180°]

    [tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{cos \: 180 \: \: \: - sin \: 180 }{sin \: 180 \: \: \: \: \: \: \: \: cos \: 180} \times \binom{x}{y} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{ - 1 \: \: \: \: \: \: \: \: 0}{0 \: \: \: \: - 1} \times \binom{x}{y} \\ \binom{ {x}^{l} }{{y}^{l} } = \binom{ - {x} }{ - y} [/tex]
    x = -x' dan y = -y'
    substitusi ke garis
    x + 3y = 0
    (-x') + 3(-y') = 0
    -x - 3y = 0
    3y + x = 0
    (C) 3y + x = 0

    30) y = x
    [tex] \binom{0 \: \: \: \: 1}{1 \: \: \: \: 0} [/tex]
    (A)

    31) P(9, -3) T(2, -1) P' (x', y')
    [tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{9}{ - 3} + \binom{2}{ - 1} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{11}{ - 4} [/tex]
    bayangan titik P' (11, -4) A

    32) P(3, 3) Dilatasi [O, 2] C
    [tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{2 \: \: \: \: 0}{0 \: \: \: \: 2} \times \binom{3}{3} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{6}{6} [/tex]
    bayangan titik C(6, 6)

    33) garis x - y - 2 = 0
    T : Refleksi sumbu x
    [tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{1 \: \: \: \: \: \: \: 0}{0 \: \: \: - 1} \times \binom{x}{y} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{x}{ - y} [/tex]
    x = x' dan y = -y'
    maka persamaan bayangannya
    x - y - 2 = 0
    (x') - (-y') - 2 = 0
    x + y - 2 = 0
    E

    34) A(2, 9) direfleksikan terhadap garis x = -1 maka bayanganya A' (2(-1) - 2, 9) = A' (-4, 9)
    lalu di refleksikan terhadap garis x = 2 maka bayanganya A" (2(2) + 4, 9) = A" (8, 9)
    A