{2x+4y-6z=-16,3x-3y+2z=6,4x-y+3z=22 mempunyai penyelesaian (x,y,z) perbandingan nilai x:y:z
Matematika
mauliza2206
Pertanyaan
{2x+4y-6z=-16,3x-3y+2z=6,4x-y+3z=22 mempunyai penyelesaian (x,y,z) perbandingan nilai x:y:z
1 Jawaban
-
1. Jawaban AKouZ1
Diketahui persamaan berikut.
2x +4y -6z = -16 --- (1)
3x -3y +2z = 6 --- (2)
4x -y +3z = 22 --- (3)
Tentukan x dengan persamaan (1)
Kurangi kedua bagian dengan 4y -6z
2x +4y -4y -6z +6z = -4y -6z -16
Penyederhanaan
2x = -4y +6z -16
x = -2y +3z -8 --- (4)
Tentukan y dengan persamaan (2)
Substitusikan x
3(-2y +3z -8) -3y +2z = 6
Penyederhanaan
-6y +9z -24 -3y +2z = 6
-3y +11z = 6
-3y = 6 -11z
y = 2 +11z/3 --- (5)
Tentukan z dengan persamaan (3)
Substitusikan x
4(-2y +3z -8) -y +3z = 22
Substitusikan y
4(-2(2 +11z/3) +3z -8) -(2 +11z/3) +3z = 22
Penyederhanaan
4(-4 -22z/3 +3z -8) -2 -11z/3 +3z = 22
-16 -88z/3 +12z -32 -2 -11z/3 +3z = 22
-50 -22 -48z = 0
-48z = 72
2z = -3
z = -3/2
Tentukan y untuk nilai pastinya dengan persamaan (5)
Substitusikan z
y = 2 +11(-3/2)/3
y = 2 -33/6
y = 21/6
y = 7/2
Tentukan x untuk nilai pastinya dengan persamaan (4)
Substitusikan y dan z
x = -2(7/2) +3(-3/2) -8
x = -14/2 -9/2 -16/2
x = -39/2
Sekarang telah didapatkan
x = -39/2
y = 7/2
z = -3/2
Perbandingan untuk tiga variabel tersebut adalah
-39:7:-3