ka bantu aku yah aku gak ngerti. dan tolong di ksih caranya yg jelas. BANTU AKU YG NMR 2 DAN 3 NANTI KLO JWBNNY BENAR AKU TANDAI SEBAGAI JAWABAN TERBAIK TERIMA
Matematika
ailsa16
Pertanyaan
ka bantu aku yah aku gak ngerti. dan tolong di ksih caranya yg jelas. BANTU AKU YG NMR 2 DAN 3 NANTI KLO JWBNNY BENAR AKU TANDAI SEBAGAI JAWABAN TERBAIK
TERIMA KASIH
TERIMA KASIH
1 Jawaban
-
1. Jawaban AndreJS
1.)
x² + bx + 8 = 0
p = 1, q = b, r = 8
Persamaan ini memiliki akar-akar, yaitu x1 dan x2, dgn x2 > 1
Perkalian antara x1 dan x2
x1 × x2 = r/p = 8/1 = 8
x1 = 8/x2
x1, x2, dan 3x1 membentuk deret aritmatika (?)
sehingga
x2 = (x1+3x1)/2
x2 = (4x1)/2
x2 = 2x1
x2 = 2(8/x2)
x2 = 16/x2
(x2)² = 16
x2 = √16
x2 = -4 atau x2 = 4
karena x2 harus positif dan x2 > 1, maka pilih x2 = 4
x1 = 8/x2
x1 = 8/4
x1 = 2
3x1 = 3(2) = 6
Deret x1, x2, dan 3x1 yaitu
2, 4, 6 >> benar, terbentuk deret aritmatika
Penjumlahan antara x1 dan x2
x1 + x2 = 2 + 4
-q/p = 6
-b/1 = 6
- b = 6
b = -6
Jadi, nilai b = -6
2.)
x² - (2k+4)x + (3k+4) = 0
p = 1, q = -(2k+4), r = (3k+4)
Perkalian x1 dan x2
x1 × x2 = r/p = (3k+4)/1 = 3k+4
x1, k, dan x2 membentuk deret geometri
Suku pertama = x1 = a
Suku kedua = k = ar
Suku ketiga = x2 = ar²
sehingga
ar = √(a×ar²)
k = √(x1 × x2)
k = √(3k+4)
k² = 3k+4
k² - 3k - 4 = 0
( k - 4 ) ( k + 1 ) = 0
k = 4 atau k = - 1
Untuk k = 4
Penjumlahan x1 dan x2
x1 + x2 = -q/p = -(-(2k+4)) = 2k+4 = 2(4)+4 = 12
Jadi, jumlah ketiga bilangan itu
x1 + k + x2 =
x1 + x2 + k = 12 + 4 = 16
Untuk k = - 1
Penjumlahan x1 dan x2
x1 + x2 = -q/p = -(-(2k+4)) = 2k+4 = 2(-1)+4 = 2
Jadi, jumlah ketiga bilangan itu
x1 + k + x2 =
x1 + x2 + k = 2 + 4 = 6
Jadi, jumlahnya 16 atau 6